A Series of Robust Copper-Based Triazolyl Isophthalate MOFs: Impact of Linker Functionalization on Gas Sorption and Catalytic Activity †
نویسندگان
چکیده
The synthesis and characterization of an isomorphous series of copper-containing microporous metal-organic frameworks (MOFs) based on triazolyl isophthalate linkers with the general formula [Cu₄(μ₃-OH)₂(R¹-R²-trz-ia)₃(H₂O)x] are presented. Through size adjustment of the alkyl substituents R¹ and/or R² at the linker, the impact of linker functionalization on structure-property relationships was studied. Due to the arrangement of the substituents towards the cavities, the porosity (pore fraction 28%-39%), as well as the pore size can be adjusted by the size of the substituents of the triazole ring. Thermal analysis and temperature-dependent PXRD studies reveal a thermal stability of the MOFs up to 230 °C due to increasing framework stability through fine-tuning of the linker substitution pattern. Adsorption of CO₂ (298 K) shows a decreasing maximum loading with increasing steric demand of the substituents of the triazole ring. Furthermore, the selective oxidation of cyclohexene with tert-butyl hydroperoxide (TBHP) is studied over the MOFs at 323 K in liquid chloroform. The catalytic activity increases with the steric demand of the substituents. Additionally, these isomorphous MOFs exhibit considerable robustness under oxidizing conditions confirmed by CO₂ adsorption studies, as well as by the catalytic selective oxidation experiments.
منابع مشابه
An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity.
Metal–organic frameworks (MOFs) are newly emerging porous materials. Owing to their large surface area and tunable pore size and geometry, they have been studied for applications in gas storage and separation, especially in hydrogen and methane storage and carbon dioxide capture. It has been well established that the high-pressure gravimetric hydrogen-adsorption capacity of an MOF is directly p...
متن کاملاکسیداسیون کاتالیتیکی مونوکسید کربن با استفاده از نانوذرات اکسید مس تثبیت شده بر روی دیاتومیت
Background and aims: Carbon monoxide (CO) is a highly toxic, colorless, and odorless gas with a density close to the air, which is produced by natural processes and anthropogenic sources and is well known for its potential harmful and poisonous effects on humans. Inhalation of carbon monoxide gas can impair the heart and central nervous system. Diatomite supported nano copper oxide catalyst w...
متن کاملMixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics.
The metal–organic framework compound [Al(OH)(BDC-Br)] (1) (BDC-Br2− = 5-bromo-1,3-benzenedicarboxylate) denoted CAU-10-Br was synthesised under solvothermal reaction conditions. Its structure was successfully refined by Rietveld methods. The framework is based on the connection of infinite helical chains of cis-corner-sharing AlO6-polyhedra via BDC-Br2− ions. Thus non-intersecting parallel chan...
متن کاملMetallacarborane-Based Metal−Organic Framework with a Complex Topology
The long, linear cobalt(III) bis(dicarbollide)based bis(isophthalic acid) anion was synthesized as a tetraphenylphosphonium salt in five steps from 8-iodo-closo1,2-C2B10H11. The solvothermal reaction between the anionic bis(isophthalic acid) linker and copper(II) nitrate in acidified DMF yielded single crystals. Despite the tendency for copper(II) and analogous linear tetraacids to form members...
متن کاملThe Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects
Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattic...
متن کامل